Finite Element Model of Hydro Generators Coupled to a Grid Simulation Software
نویسنده
چکیده
For the simulation of electrical power systems (adjustable speed drives, wind farms, complete grids, etc.) the Kirchhoff’s model is used. Each of the components of this model (transmission line, circuit breaker, electrical machines, etc.) is represented by an equivalent circuit. These equivalent circuit models are unable to take precisely into account the non-linearities of the electrical machines. These non-linearities (eddy currents, magnetic saturation of the materials, skin effect) are however accurately predicted by the finite element method. The goal of this thesis is to add a finite element model of an electrical machine, the hydro generator, to a grid solver. The nature of the link between the grid solver and the finite element model is first investigated. Then, a finite element program used solely to the simulation of the hydro generator and to its link with a grid solver is designed. The features required for such a program are mandated by the physic of the device modelled: dealing with non-linear materials, eddy currents and taking the movement of the rotor into account. VI Furthermore, it is possible to use the symmetries of the studied device to reduce both the calculating time and the necessary memory. All these features were validated individually, before being used together in the simulation of a hydro generator.
منابع مشابه
Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملDynamic Simulation and Control of a Continuous Bioreactor Based on Cell Population Balance Model
Saccharomyces cerevisiae (baker’s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance equation (PBE) can be used to capture the dynamic behavior of such cultures. In this work, an unstructured-segregated model is used f...
متن کاملFinite element simulation of microstructure evolution during friction stir welding of automotive aluminum parts
7000 series Aluminum alloys are widely used in the automotive industries for structural lightweight components due to their exceptional high strength to weight ratio. However, this class of aluminum alloy is difficult to join by conventional fusion welding techniques so Friction stir welding (FSW) widely is used for welding this alloys. The process has been demonstrated to be effective and is c...
متن کاملChip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”
The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...
متن کاملExperimental and Numerical Investigation of Laser Assisted PC to Polycarbonate Welding
Laser welding is a novel method for direct joining of metals and polymers, which leads to a mechanical and chemical bond between metal and polymer. In this study, feasibility of dissimilar joining between St12 and polycarbonate is studied theoretically. Then, the ND: YAG laser is implemented to join St12 and Polycarbonate. Empirical results indicate creation of a joint between St12 and polycarb...
متن کامل